3.125 \(\int \frac {\cos (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=73 \[ \frac {2 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

[Out]

-arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+2*sin(d*x+c)/d/(a+a*cos(d*x+
c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2751, 2649, 206} \[ \frac {2 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d)) + (2*Sin[c + d*x])
/(d*Sqrt[a + a*Cos[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx &=\frac {2 \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}-\int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx\\ &=\frac {2 \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\frac {2 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}\\ &=-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 53, normalized size = 0.73 \[ -\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left (\tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{d \sqrt {a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(-2*Cos[(c + d*x)/2]*(ArcTanh[Sin[(c + d*x)/2]] - 2*Sin[(c + d*x)/2]))/(d*Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 1.31, size = 122, normalized size = 1.67 \[ \frac {\frac {\sqrt {2} {\left (a \cos \left (d x + c\right ) + a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}} + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*(a*cos(d*x + c) + a)*log(-(cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(
a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a) + 4*sqrt(a*cos(d*x + c) + a)*sin(d*x +
 c))/(a*d*cos(d*x + c) + a*d)

________________________________________________________________________________________

giac [A]  time = 1.06, size = 74, normalized size = 1.01 \[ \frac {\sqrt {2} {\left (\frac {\log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {a}} + \frac {2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}\right )}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

sqrt(2)*(log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)))/sqrt(a) + 2*tan(1/2*d*x
+ 1/2*c)/sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))/d

________________________________________________________________________________________

maple [A]  time = 0.31, size = 120, normalized size = 1.64 \[ -\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a -2 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\right )}{a^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(a+a*cos(d*x+c))^(1/2),x)

[Out]

-cos(1/2*d*x+1/2*c)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(a*sin(1/2*d*x+1/
2*c)^2)^(1/2)+a))*a-2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))/a^(3/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)
^2)^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [B]  time = 0.40, size = 60, normalized size = 0.82 \[ \frac {2\,\left (2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |1\right )-\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |1\right )\right )\,\sqrt {\frac {a+a\,\cos \left (c+d\,x\right )}{2\,a}}}{d\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)/(a + a*cos(c + d*x))^(1/2),x)

[Out]

(2*(2*ellipticE(c/2 + (d*x)/2, 1) - ellipticF(c/2 + (d*x)/2, 1))*((a + a*cos(c + d*x))/(2*a))^(1/2))/(d*(a + a
*cos(c + d*x))^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos {\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(cos(c + d*x)/sqrt(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________